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remain unsolved. Such discussions may be difficult at 
the present stage because even the structural defects in 
original fl"-alumina have so far not been satisfactorily 
clarified. It is, however, our opinion that the essential 
points of our results deduced from the idealized crystal 
structure of fl"-alumina may hold substantially un- 
changed even for real, non-stoichiometric fl"-alumina. 

The authors wish to express their deep gratitude to 
Drs A. Imai, M. Harata and T. Ohta (Toshiba 
Research and Development Center) for the prepar- 
ation of the sample crystals and to Drs K. Kato and Y. 
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thank Messrs Y. Sekikawa and K. Sakaguchi (NIRIM) 
for their help in high-resolution HVEM experiments. 

References 

BETTMAN, M. & PETERS, C. R. (1969). J. Phys. Chem. 73, 
1774-1780. 

BEVAN, D. J., HUDSON, B. & MOSELEY, P. T. (1974). Mater. 
Res. Bull. 9, 1073-1083. 

BOVIN, J. O. (1978). Nature (London), 273, 136-138. 
BOVlN, J. O. (1979). Acta Cryst. A35, 572-580. 
COWLEY, J. M. t~, hJIMA, S. (1972). Z. Naturforsch. 27, 

445-451. 
COWLEY, J. M. & MOODIE, A. F. (1957). Acta Cryst. 10, 

609-619. 

DE JONGHE, L. C. (1977). Mater. Res. Bull. 12, 667-674. 
DE JONGHE, L. C. (1979). J. Am. Ceram. Soc. 62, 289-293. 
FEJES, P. L. (1977). Acta Cryst. A33, 109-113. 
GOODMAN, P. ~; MOODIE, A. F. (1974). Acta Cryst. A30, 

280-290. 
HORIUCm, S. & MATSUI, Y. (1974). Philos. Mag. 30, 

777-787. 
HORIUCHI, S., MATSUI, Y., BANDO, Y., KATSUTA, T. & 

MATSUI, I. (1978). J. Electron Microsc. 27, 39-48. 
HogIvcm, S., MURAMATSU, K. & MATSUI, Y. (1978). Acta 

Cryst. A34, 939-946. 
KUMMER, J. T. (1972). Prog. Solid State Chem. 7, 141- 

175. 
MATSUI, Y. ( 1981). J. Appl. Crvst. In the press. 
MATSUI, Y. & Homucm, S. (1977). Proc. 5th International 

Conference on High-Voltage Electron Microscopy, Kyoto, 
pp. 321-324. Tokyo: Japanese Society of Electron 
Microscopy. 

MATSUI, Y., HORIUCHI, S. & OHTA, T. (1980). J. Solid State 
Chem. 32, 181-184. 

PAULIN6, L. (1960). The Nature of the Chemical Bond, 3rd 
ed., pp. 505-562. Ithaca: Cornell Univ. Press. 

SATO, H. & HmOTSU, Y. (1976). Mater. Res. Bull. 11, 
1307-1317. 

SCHERZER, O. (1949). J. Appl. Phys. 20, 20-29. 
WEaER, N. & VENERO, A. F. (1970). Paper 14%70, 72nd 

Annual Meeting of Am. Ceram. Soc., Philadelphia. 
YAMAGUCHI, G. & SUZUKI, K. (1968). Bull. Chem. Soc. Jpn, 

41, 93-99. 

Acta Cryst. (1981). A37, 61-65 

Stacking Variants for Doubly-Connected Systems Arranged According to the 
Percentages of Hexagonal Stacking 

BY K. KLEPP AND E. PARTHI~ 

Laboratoire de Cristallographie aux Rayons X, Universitd de Gendve, Quai Ernest A nsermet 24, 
CH- 1211 Gendve 4, Switzerland 

(Received 21 May 1980: accepted 1 July 1980) 

Abstract 

As an extension of Table 7.1.5B of International 
Tables for  X-ray Crystallography [(1967), Vol. II. 
Birmingham: Kynoch Press], the possible stacking 
variants up to ten layers are arranged according to the 
percentage of hexagonal stacking. A method is given 
which allows one to calculate the number of possible 
stacking variants for any number of layers. 

Introduction 

Over the last few years several relations have been 
found between certain physical or structural properties 
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and the percentage of hexagonal stacking of the layers 
or sheets for compounds which have close-packed or 
derivative structures. 

The following examples can be mentioned: 
(a) The change in the percentage of hexagonal 

stacking of close-packed rare-earth metals, R, or of 
rare-earth-aluminium alloys, RAI 3, with increasing 
pressure (Gschneidner & Pearson, 1968). 

(b) The change of the birefringence of ZnS variants 
with a change of the percentage of hexagonal stacking 
(Brafman & Steinberger, 1966; Parth6, 1972). 

(¢) The change of the percentage of hexagonal 
stacking of ternary Laves phases with valence electron 
concentration (Parth6, 1974; Komura & Kitano, 1977). 
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(d) The change of the percentage of hexagonal 
stacking of CrB-FeB stacking variants in quasibinary 
rare-earth-nickel systems R,_xRxNi  upon changing the 
R/R '  ratio (Klepp & Parth6, 1980). 

For a study of these relations it is desirable to have 
available a table of possible stacking variants arranged 
according to the percentage of hexagonal stacking. 
Unfortunately, neither in International Tables for  
X-ray Crystallography (1967) nor in Beck (1967) is 
such a table to be found. 

Arrangement of stacking variants according to percen- 
tage of hexagonal stacking 

In Table 1 all possible stacking variants up to ten layers 
(N = 10) are listed, arranged according to the 
percentage of hexagonal stacking. This table is appli- 
cable to all doubly-connected systems which, following 
Beck (1967), are characterized by the availability of 
only two stacking operations. For a given number of 
layers the entries are subdivided according to the 
difference between the number of positive (p) and 
negative (n) sideways displacements of the layers. A 
change of sign of the sideways displacement occurs with 
every new digit in the Zhdanov symbols. Table 1 serves 
also to obtain the cyclicity value of a stacking variant, 
which after Mardix, Steinberger & Kalman (1970) is 
defined as bp - n L/N. The total number of possible 
stacking variants for a given number of layers, 
~ ( N ) ,  is given on the bottom line. In agreement with 
Table 7.1.5B of International Tables for  X-ray 
Crystallography (1967) the extended Zhdanov notation 
has been applied to denote the stacking variants. 
Because we deal with a doubly-connected system the 
number of Zhdanov digits must be even. The mirror 
symmetry in the sequence of the Zhdanov succession 
numbers is shown in two ways according to whether the 
signs of the stacking sequence are alike or opposite. For 
like signs, parentheses are placed around the succession 
number in the mirror plane, whilst a vertical bar is 
placed between two succession numbers for a mirror 
symmetry relating opposite signs of identical succession 
numbers. The symmetry and particularly the space 
group of the stacking variant depend on the individual 
symmetry of the layer or sheet and on the symmetry of 
the Zhdanov symbol.* In each field the Zhdanov 
symbols are, where possible, arranged according to the 
symmetry of the stacking period. The percentage of 
hexagonal stacking is given by 

number of digits 
× 100 

sum of numbers 

* There are additional symmetry properties to be considered if 
the amount of sideways displacement is a fraction of the translation 
period in that direction (for example the rhombohedral symmetry in 
close-packed structures when the sideways displacement is one third 
of the translation period). 

of the corresponding Zhdanov symbol [except for the 
cubic stacking (1)(0) with 0% hexagonal stackingl. 

The possible values of the percentage of hexagonal 
stacking for different numbers of layers N are displayed 
graphically in Fig. 1. They correspond to the intersec- 
tions of two families of hyperbolae with formulae 

% hexagonal stacking = 100 × 
N* - N C 

N* 

and 

% hexagonal stacking = 100 × - -  
N~ 

N* 

where N* is a continuous positive variable and N c and 
N h are positive integers, the latter having only even 
values. At an intersection of two hyperbolae we find 

N* = N c + Nj, =- N. 

For a given value of N > 2 the possible percentages of 
hexagonal stacking are given by 100 × Nh/N  where Nt, 
= 2, 4, 6 . . . .  with N h < N. N h represents the number of 
digits in the Zhdanov formula or, expressed differently, 
the number of h symbols in the corresponding 
Jagodzinski formula which for doubly-connected sys- 
tems has to be even. N C corresponds to the number of c 
symbols in the Jagodzinski formula. 

In the circles at the intersections of the hyperbolae 
the number of possible stacking variants is indicated. 
To the right of the figure is shown the total number of 
stacking variants Y (N) for a given number of layers. 

Number of foyers 

N=pen 

N* 10 / 

TZ 

4 ~  

~:(N) 

qO 20 30 40 50 60 70 BO 90 'qO0 

Percentage of hexagonal stocking 

Fig. 1. Hyperbola construction displaying the possible values of the 
percentage of hexagonal stacking for up to ten layers. 
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Calculation of the number of stacking variants for an 
arbitrary number of stacked layers 

Since stacking is an infinite periodic operation, all 
layers of the stacking period are formally equivalent as 
possible starting points of the period. This fact can be 
expressed by writing down the corresponding stacking 
symbol in the form of a closed cycle. It is especially 
useful to apply this concept to the Jagodzinski notation 
since then only two different symbols are required (h 
and c) and the total number of symbols equals the 
number of layers. From the point of view of graph 
theory, the cyclic Jagodzinski symbol of a stacking 
sequence is equivalent to the molecular formula of an 
organic ring system with two different substituents (say 
X and Y). One substitution position is available on each 
C atom. Both cyclic Jagodzinski formulae and organic 
molecular formulae can be presented by the same graph 
as shown by the following example. 

X 

Y - C / ~ . . ~ C - X  

~ c  / Y-- - -y  

I 
Y 

Except for two restrictions, to be discussed later, the 
problem of enumerating the number of possible 
stacking variants corresponds to the problem of 
calculating the number of substituted ring compounds. 
This problem has been solved by P61ya (1937). 

The number of different solutions for substituted 
N-membered rings is given by the generating function 

A ( N )  = a o + a l x  + ax x2 + a3x 3 + . . .  + aN X x ,  (1) 

where the exponents indicate the numbers of substitu- 
ents of one kind and the coefficient a~ indicates the 
number of different arrangements for a given number i 
of substituents of one kind. According to P61ya's 
(193 7) Hauptsa tz  the coefficients ag can be obtained by 
calculation from the polynomial expressions 

A ( N ) =  ~ (0(K)(I + 

+ N(1 + x)(1 + x2) ~u-l~/2 

for N odd, and 

A ( N )  = - ~  ~p(K)(1 + 

+ - -  (1 + x) z (1 + x2) u n - '  
2 

+(1  + x2,"/2 ] } 

(2) 

(3) 

for N even. The summation is to be made over all 
divisors, K, of N (including 1 and N) and ~0(K) is 
Euler's totient function which for K = 1 assumes the 
value 1 and is otherwise given by 

(') ¢p(K) = K Ie 1 1 (4) 

where P are the prime factors of K. Note that 

q~(K) = N. (5) 
K 

The number of different stacking variants is a partial 
set of the number of solutions for the ring systems given 
above because the infinite nature of the lattice imposes 
two restrictions: 

(1) The number of hexagonal stacking steps must be 
even. Thus in (1) only coefficients a i with even index are 
of interest, the index corresponding to N h. 

(2) A stacking period containing identical subperiods 
with an even number of hexagonal stacking steps does 
not constitute a new stacking variant (for example 
h2ch2e corresponds to h2c). Thus the numbers of 
stacking variants of the divisors of N at the correspond- 
ing values of the percentage of hexagonal stacking have 
to be subtracted. 

Example:  N = 12. Equation (3) can be written 

A(12) = ~ { ( 1  + X) 12 + (1 + X2) 6 + 2(1 + x 3 )  4 

+ 2(1 + x6) 2 + 4(1 + x l 2 )  1 

+ 6 1 ( 1 + x ) 2 ( l + x 2 )  5+(1  +x2)61} (6) 

= 1 + x + 6x 2 + 12x 3 + 29x 4 + 38x 5 + 5 0 x  6 

+ 38x 7 + 29x 8 + 12X 9 + 6X ~° 

+ X II + X 12 (7) 

The coefficients a i corresponding to even exponents of 
x are listed in the second row of Table 2. From these 
values have to be subtracted, at the corresponding 
values of the percentage of hexagonal stacking, the 
number of stacking variants for N = 6, 4, 3, 2 and 1 
written into the circles in Fig. 1. There are altogether 
112 different stacking variants for N = 12 in agreement 
with Table 7.1.5B of International  Tables f o r  X-ray  
Crystallography (1967). 

For the special case that N k and N have no common 
divisor and N h 4:0  and N odd and > 1, it is possible to 
obtain the coefficients aN, directly without solving (2) 
by 

1 ( N -  1 ) ( N - 3 ) . . . ( N - N  a+ 1) 

au"(N) = 2  1 x 2 x 3 x . . .  x Ni, 

x I N ( N -  2 ) ( N - 4 ) . . .  ( N -  N h + 2) /N 

+ 1 x 3 x . . . x  (N h -  1)] (8) 
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Table 2. Enumeration of  the number of  stacking variants for N = 12 

Percentage of hexagonal stacking 0 16.67 33.33 50 66.67 83.33 100 

Number of solutions obtained from P61ya's (1937) 
Hauptsatz 1 6 29 50 29 6 1 

Number of solutions for divisors of 12 to be subtracted 
N = 6  3 2 
N = 4  2 
N - 3  1 
N = 2  1 
N - 1  1 

Number of stacking variants for N = 12 0 6 26 48 26 6 0 

65 

\, (12): l l2 

with the special solutions 

a2(N) = ( N -  1)/2 and aN_, (N ) = 1. 

For example, for N = 11 one obtains for N h = 2, 4, 6, 8 
and 10 the values 5, 20, 26, 10 and I. The sum ~ (11) = 
62 is again in agreement with International Tables for  
X-ray Crystallography ( 1967). 

If N is a prime number  and N _> 3 the total number  of  
stacking variants is given by 

2(N-1)/2(2 (N-I)/2 + N) -- (N + 1) 
Z ( N )  = (9) 

2N 
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Abstract 

A systematic convergence test for constrained rigid- 
body least-squares refinement shows good possibility of 
convergence towards the right solution, even starting 
from strongly misplaced molecular models (trans- 
lations of  about 1.5 A and rotat ions of about 30°), if an 
appropriate sequence of reflections and strategy is used. 
Consequently,  a routine for solving structures with a 
known molecular model by ab initio least-squares 
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refinement has been written, and successfully tested 
with three unknown structures: inclusion of second 
derivatives has also been tested, with a view to 
improving the method. In all cases so far examined, the 
routine is very fast, simple to use and competitive with 
usual methods, even when the model is only approxi- 
mately known. The inclusion of second derivatives as 
such is not convenient,  at least if precautions are not 
taken to reach a true minimum: a possible way of 
further improvement is discussed. 
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