remain unsolved. Such discussions may be difficult at the present stage because even the structural defects in original $\beta^{\prime \prime}$-alumina have so far not been satisfactorily clarified. It is, however, our opinion that the essential points of our results deduced from the idealized crystal structure of $\beta^{\prime \prime}$-alumina may hold substantially unchanged even for real, non-stoichiometric $\beta^{\prime \prime}$-alumina.

The authors wish to express their deep gratitude to Drs A. Imai, M. Harata and T. Ohta (Toshiba Research and Development Center) for the preparation of the sample crystals and to Drs K. Kato and Y. Bando (NIRIM) for valuable discussions. They also thank Messrs Y. Sekikawa and K. Sakaguchi (NIRIM) for their help in high-resolution HVEM experiments.

References

Bettman, M. \& Peters, C. R. (1969). J. Phys. Chem. 73, 1774-1780.
Bevan, D. J., Hudson, B. \& Moseley, P. T. (1974). Mater. Res. Bull. 9, 1073-1083.
Bovin, J. O. (1978). Nature (London), 273, 136-138.
Bovin, J. O. (1979). Acta Cryst. A 35, 572-580.
Cowley, J. M. \& Iisima, S. (1972). Z. Naturforsch. 27, 445-451.
Cowley, J. M. \& Moodie, A. F. (1957). Acta Cryst. 10, 609-619.

De Jonghe, L. C. (1977). Mater. Res. Bull. 12, 667-674.
De Jonghe, L. C. (1979). J. Am. Ceram. Soc. 62, 289-293.
Fejes, P. L. (1977). Acta Cryst. A33, 109-113.
Goodman, P. \& Moodie, A. F. (1974). Acta Cryst. A30, 280-290.
Horiuchi, S. \& Matsui, Y. (1974). Philos. Mag. 30, 777-787.
Horiuchi, S., Matsui, Y., Bando, Y., Katsuta, T. \& Matsui, I. (1978). J. Electron Microsc. 27, 39-48.
Horiuchi, S., Muramatsu, K. \& Matsui, Y. (1978). Acta Cryst. A 34, 939-946.
Kummer, J. T. (1972). Prog. Solid State Chem. 7, $141-$ 175.

Matsui, Y. (1981). J. Appl. Cryst. In the press.
Matsui, Y. \& Horiuchi, S. (1977). Proc. 5th International Conference on High-Voltage Electron Microscopy, Kyoto, pp. 321-324. Tokyo: Japanese Society of Electron Microscopy.
Matsui, Y., Horiuchi, S. \& Ohta, T. (1980). J. Solid State Chem. 32, 181-184.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed., pp. 505-562. Ithaca: Cornell Univ. Press.
Sato, H. \& Hirotsu, Y. (1976). Mater. Res. Bull. 11, 1307-1317.
Scherzer, O. (1949). J. Appl. Phys. 20, 20-29.
Weber, N. \& Venero, A. F. (1970). Paper 1-JV-70, 72nd Annual Meeting of Am. Ceram. Soc., Philadelphia.
Yamaguchi, G. \& Suzuki, K. (1968). Bull. Chem. Soc. Jpn, 41, 93-99.

Acta Cryst. (1981). A 37, 61-65

Stacking Variants for Doubly-Connected Systems Arranged According to the Percentages of Hexagonal Stacking

By K. Klepp and E. Parthé
Laboratoire de Cristallographie aux Rayons X, Université de Genève, Quai Ernest Ansermet 24, CH-1211 Genève 4, Switzerland

(Received 21 May 1980: accepted 1 July 1980)

Abstract

As an extension of Table 7.1.5B of International Tables for X-ray Crystallography |(1967), Vol. II. Birmingham: Kynoch Pressl, the possible stacking variants up to ten layers are arranged according to the percentage of hexagonal stacking. A method is given which allows one to calculate the number of possible stacking variants for any number of layers.

Introduction

Over the last few years several relations have been found between certain physical or structural properties 0567-7394/81/010061-05\$01.00
and the percentage of hexagonal stacking of the layers or sheets for compounds which have close-packed or derivative structures.

The following examples can be mentioned:
(a) The change in the percentage of hexagonal stacking of close-packed rare-earth metals, R, or of rare-earth-aluminium alloys, $R \mathrm{Al}_{3}$, with increasing pressure (Gschneidner \& Pearson, 1968).
(b) The change of the birefringence of ZnS variants with a change of the percentage of hexagonal stacking (Brafman \& Steinberger, 1966; Parthé, 1972).
(c) The change of the percentage of hexagonal stacking of ternary Laves phases with valence electron concentration (Parthé, 1974; Komura \& Kitano, 1977). © 1981 International Union of Crystallography
(d) The change of the percentage of hexagonal stacking of $\mathrm{CrB}-\mathrm{FeB}$ stacking variants in quasibinary rare-earth-nickel systems $R_{1-x} R_{x}^{\prime} \mathrm{Ni}$ upon changing the R / R^{\prime} ratio (Klepp \& Parthé, 1980).

For a study of these relations it is desirable to have available a table of possible stacking variants arranged according to the percentage of hexagonal stacking. Unfortunately, neither in International Tables for X-ray Crystallography (1967) nor in Beck (1967) is such a table to be found.

Arrangement of stacking variants according to percentage of hexagonal stacking

In Table 1 all possible stacking variants up to ten layers ($N=10$) are listed, arranged according to the percentage of hexagonal stacking. This table is applicable to all doubly-connected systems which. following Beck (1967), are characterized by the availability of only two stacking operations. For a given number of layers the entries are subdivided according to the difference between the number of positive (p) and negative (n) sideways displacements of the layers. A change of sign of the sideways displacement occurs with every new digit in the Zhdanov symbols. Table 1 serves also to obtain the cyclicity value of a stacking variant, which after Mardix, Steinberger \& Kalman (1970) is defined as $|p-n| / N$. The total number of possible stacking variants for a given number of layers, $\sum(N)$, is given on the bottom line. In agreement with Table 7.1.5B of International Tables for X-ray Crystallography (1967) the extended Zhdanov notation has been applied to denote the stacking variants. Because we deal with a doubly-connected system the number of Zhdanov digits must be even. The mirror symmetry in the sequence of the Zhdanov succession numbers is shown in two ways according to whether the signs of the stacking sequence are alike or opposite. For like signs, parentheses are placed around the succession number in the mirror plane, whilst a vertical bar is placed between two succession numbers for a mirror symmetry relating opposite signs of identical succession numbers. The symmetry and particularly the space group of the stacking variant depend on the individual symmetry of the layer or sheet and on the symmetry of the Zhdanov symbol.* In each field the Zhdanov symbols are, where possible, arranged according to the symmetry of the stacking period. The percentage of hexagonal stacking is given by

$$
\frac{\text { number of digits }}{\text { sum of numbers }} \times 100
$$

[^0]of the corresponding Zhdanov symbol lexcept for the cubic stacking (1)(0) with 0% hexagonal stackingl.

The possible values of the percentage of hexagonal stacking for different numbers of layers N are displayed graphically in Fig. 1. They correspond to the intersections of two families of hyperbolae with formulae

$$
\% \text { hexagonal stacking }=100 \times \frac{N^{*}-N_{c}}{N^{*}}
$$

and

$$
\% \text { hexagonal stacking }=100 \times \frac{N_{h}}{N^{*}}
$$

where N^{*} is a continuous positive variable and N_{c} and N_{h} are positive integers, the latter having only even values. At an intersection of two hyperbolae we find

$$
N^{*}=N_{c}+N_{h} \equiv N .
$$

For a given value of $N>2$ the possible percentages of hexagonal stacking are given by $100 \times N_{h} / N$ where N_{h} $=2,4,6, \ldots$ with $N_{h}<N . N_{h}$ represents the number of digits in the Zhdanov formula or, expressed differently, the number of h symbols in the corresponding Jagodzinski formula which for doubly-connected systems has to be even. N_{c} corresponds to the number of c symbols in the Jagodzinski formula.

In the circles at the intersections of the hyperbolae the number of possible stacking variants is indicated. To the right of the figure is shown the total number of stacking variants $\sum(N)$ for a given number of layers.

Fig. 1. Hyperbola construction displaying the possible values of the percentage of hexagonal stacking for up to ten layers.
Table 1. List of possible stacking variants up to ten layers arranged according to the percentage of hexagonal stacking

$\begin{array}{r} N=p+n \\ \|p-n\| \end{array}$	$1 \begin{aligned} & 1 \\ & 1\end{aligned}$	0	3	04	2	1	$\begin{aligned} & 5 \\ & 3 \end{aligned}$	0	62	4	1	73	5	0	2	4	6		\|	5	7	0	10		6	8	
			1																				2	4			
0	(1)01																										
20																						$\|(5)\|(s) \mid$	(6)(4)	17×31	(8) 21	19k11	
22.2																		(5K4)	(6) 31	$171(2)$	181)1						
25														$1(4)\|(4)\|$	(5)(3)	(6)12)	(7)(1)										
28.6											(4)(3)	(S) 21	(6k1)														
33.3								I(3)\|(3)	(4)2)	(5)(1)																	
40						(3)(2)	(4)(1)															1411141 1321231 4312	$\begin{array}{r} (5) 2(1) 2 \\ (4) 2(2) 2 \\ (3) 3(1) 3 \\ 5311 \\ 4321 \end{array}$	6211 5221 4231	$\left\|\begin{array}{l} (7) 1(1) 1 \\ (6) 1(2) 1 \\ (5) 1(3) 1 \end{array}\right\|$		
44.4																		$(4) 2(1) 2$ (3)22 222 4311 3321	$\begin{array}{r} (2) 3(1) 3 \\ 5211 \\ 4221 \end{array}$	$\left\|\begin{array}{l} (6) 1(1) 1 \\ (5) 1(2) 1 \\ (4) 11(3) 1 \end{array}\right\|$							
50				\|(2)	$21 \mid$	(3)11)									1311131 13121112	4211 3221	$\left.\begin{array}{\|l\|} (s) 1(1) 1 \\ (4) H(2) 1 \end{array} \right\rvert\,$										
57.1											$\begin{array}{r} 212(112 \\ 3211 \\ \hline \end{array}$	$\begin{aligned} & 14) 1(131 \\ & 13) 1(211 \\ & \hline \end{aligned}$															
60																							$\begin{array}{r} (4) 11(2) 11 \\ (2121(2) 12 \\ 421111 \\ 322111 \\ 312211 \\ 321121 \end{array}$	(3)111111! $13) 12(1121$ $(1) 311113$ 412111			
66.7			(2)(1)					$\|21\| 12 \mid$	(3)1(1)										$\left\|\begin{array}{r} (4) 111(1) 11 \\ 312111 \end{array}\right\|$								
75														$\left\|\begin{array}{r} 11(21111(2) 11 \\ 12111122 \mid \end{array}\right\|$	$\left[\begin{array}{l} (3) 11(1) 11 \\ (1) 21(1112 \end{array}\right]$												
80						(2)1(1)																$\left\lvert\, \begin{aligned} & 121111 \mid 11121 \\ & 1211\|11121\| \\ & \hline \end{aligned}\right.$	$\left\|\begin{array}{l} (31111(1) 111 \\ 11) 211(1) 112 \end{array}\right\|$				
85.7											(2)11(1) 11																
88.9																		(2)111(1)111									
100		1) (1)																									
$\Sigma(N)$	1	1	1	2		3			5			8			14				21				3				

Calculation of the number of stacking variants for an arbitrary number of stacked layers

Since stacking is an infinite periodic operation, all layers of the stacking period are formally equivalent as possible starting points of the period. This fact can be expressed by writing down the corresponding stacking symbol in the form of a closed cycle. It is especially useful to apply this concept to the Jagodzinski notation since then only two different symbols are required (h and c) and the total number of symbols equals the number of layers. From the point of view of graph theory, the cyclic Jagodzinski symbol of a stacking sequence is equivalent to the molecular formula of an organic ring system with two different substituents (say X and Y). One substitution position is available on each C atom. Both cyclic Jagodzinski formulae and organic molecular formulae can be presented by the same graph as shown by the following example.

Except for two restrictions, to be discussed later, the problem of enumerating the number of possible stacking variants corresponds to the problem of calculating the number of substituted ring compounds. This problem has been solved by Pólya (1937).
The number of different solutions for substituted N-membered rings is given by the generating function

$$
A(N)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots+a_{N} x^{N},(1)
$$

where the exponents indicate the numbers of substituents of one kind and the coefficient a_{i} indicates the number of different arrangements for a given number i of substituents of one kind. According to Pólya's (1937) Hauptsatz the coefficients a_{i} can be obtained by calculation from the polynomial expressions

$$
\begin{align*}
A(N)=\frac{1}{2 N} & {\left[\sum_{K} \varphi(K)\left(1+x^{K}\right)^{N / K}\right.} \\
& \left.+N(1+x)\left(1+x^{2}\right)^{(N-1) / 2}\right] \tag{2}
\end{align*}
$$

for N odd, and

$$
\begin{align*}
A(N)=\frac{1}{2 N} & \left\{\sum_{K} \varphi(K)\left(1+x^{K}\right)^{N / K}\right. \\
& +\frac{N}{2}\left[(1+x)^{2}\left(1+x^{2}\right)^{N / 2-1}\right. \\
& \left.\left.+\left(1+x^{2}\right)^{N / 2}\right]\right\} \tag{3}
\end{align*}
$$

for N even. The summation is to be made over all divisors, K, of N (including 1 and N) and $\varphi(K)$ is Euler's totient function which for $K=1$ assumes the value 1 and is otherwise given by

$$
\begin{equation*}
\varphi(K)=K]_{P}\left(1-\frac{1}{P}\right) \tag{4}
\end{equation*}
$$

where P are the prime factors of K. Note that

$$
\begin{equation*}
\sum_{K} \varphi(K)=N . \tag{5}
\end{equation*}
$$

The number of different stacking variants is a partial set of the number of solutions for the ring systems given above because the infinite nature of the lattice imposes two restrictions:
(1) The number of hexagonal stacking steps must be even. Thus in (1) only coefficients a_{i} with even index are of interest, the index corresponding to N_{h}.
(2) A stacking period containing identical subperiods with an even number of hexagonal stacking steps does not constitute a new stacking variant (for example $h_{2} \mathrm{ch}_{2} c$ corresponds to $h_{2} c$). Thus the numbers of stacking variants of the divisors of N at the corresponding values of the percentage of hexagonal stacking have to be subtracted.

Example: $N=12$. Equation (3) can be written

$$
\begin{align*}
A(12)=\frac{1}{24}\{ & (1+x)^{12}+\left(1+x^{2}\right)^{6}+2\left(1+x^{3}\right)^{4} \\
& +2\left(1+x^{6}\right)^{2}+4\left(1+x^{12}\right)^{1} \\
& \left.+6\left[(1+x)^{2}\left(1+x^{2}\right)^{5}+\left(1+x^{2}\right)^{6}\right]\right\} \tag{6}\\
=1 & +x+6 x^{2}+12 x^{3}+29 x^{4}+38 x^{5}+50 x^{6} \\
& +38 x^{7}+29 x^{8}+12 x^{9}+6 x^{10} \\
& +x^{11}+x^{12} \tag{7}
\end{align*}
$$

The coefficients a_{i} corresponding to even exponents of x are listed in the second row of Table 2. From these values have to be subtracted, at the corresponding values of the percentage of hexagonal stacking, the number of stacking variants for $N=6,4,3,2$ and 1 written into the circles in Fig. 1. There are altogether 112 different stacking variants for $N=12$ in agreement with Table 7.1.5B of International Tables for X-ray Crystallography (1967).

For the special case that N_{h} and N have no common divisor and $N_{h} \neq 0$ and N odd and >1, it is possible to obtain the coefficients $a_{N_{\mathrm{n}}}$ directly without solving (2) by

$$
\begin{align*}
a_{N_{h}}(N)=\frac{1}{2} & \frac{(N-1)(N-3) \ldots\left(N-N_{h}+1\right)}{1 \times 2 \times 3 \times \ldots \times N_{h}} \\
& \times\left[N(N-2)(N-4) \ldots\left(N-N_{h}+2\right) / N\right. \\
& \left.+1 \times 3 \times \ldots \times\left(N_{h}-1\right)\right] \tag{8}
\end{align*}
$$

Table 2. Enumeration of the number of stacking variants for $N=12$

Percentage of hexagonal stacking	0	16.67	33.33	50	66.67	83.33	100	
Number of solutions obtained from Pólya's (1937) Hauptsatz	1	6	29	50	29	6	1	
Number of solutions for divisors of 12 to be subtracted $\begin{aligned} & N=6 \\ & N=4 \\ & N=3 \\ & N=2 \\ & N-1 \end{aligned}$	1		3	2	2 1		1	
Number of stacking variants for $N=12$	0	6	26	48	26	6	0	$\underline{(12)}=112$

with the special solutions

$$
a_{2}(N)=(N-1) / 2 \quad \text { and } \quad a_{N-1}(N)=1 .
$$

For example, for $N=11$ one obtains for $N_{h}=2,4,6,8$ and 10 the values $5,20,26,10$ and 1 . The sum $\sum(11)=$ 62 is again in agreement with International Tables for X-ray Crystallography (1967).

If N is a prime number and $N \geq 3$ the total number of stacking variants is given by

$$
\begin{equation*}
\sum(N)=\frac{2^{(N-1) / 2}\left(2^{(N-1) / 2}+N\right)-(N+1)}{2 N} . \tag{9}
\end{equation*}
$$

We thank Dr H. D. Flack for helpful comments and suggestions.

This study was supported by the Swiss National Science Foundation under project no. 2.601-0.80.

References

Веск, Р. А. (1967). Z. Kristallogr. 124, 101-114.
Brafman. O. \& Steinberger, i. T. (1966). Phys. Rec. 143. 501-505.
Gschneidner, K. A. \& Pearson, W. B. (1968). Mater. Res. Bull. 3. 951-962.
International Tables for X-ray Crystallography (1967). Vol. 2. Birmingham: Kynoch Press.

Klepp, K. \& Parthé, E. (1980). Acta Cryst. B36, 774-782.
Komura, Y. \& Kitano, Y. (1977). Acta Cryst. B33. 2496-2501.
Mardix. S.. Steinberger, I. T. \& Kalman, Z. H. (1970). Acta Crust. B26, 24-28.
Parthé, E. (1972). Cristallochimie des Structures Tetraédriques. Paris: Gordon \& Breach.
Parthé, E. (1974). In XXIVth International Congress of Pure and Applied Chemistry, Vol. 3, pp. 139-158. London: Butterworths.
PÓlya, G. (1937). Acta Math. 68, 145-253.

Acta Cryst. (1981). A37, 65-71

Solving Structures by Constrained Least-Squares Refinement

By Riccardo Bianchi, Carlo M. Gramaccioli, Tullio Pilati and Massimo Simonetta
Istituto di Chimica Fisica e Centro CNR, Università di Milano, Via Golgi 19, I-21033 Milano, Italy

(Received 22 May 1980; accepted 1 July 1980)

Abstract

A systematic convergence test for constrained rigidbody least-squares refinement shows good possibility of convergence towards the right solution, even starting from strongly misplaced molecular models (translations of about $1.5 \AA$ and rotations of about 30°), if an appropriate sequence of reflections and strategy is used. Consequently, a routine for solving structures with a known molecular model by $a b$ initio least-squares

[^1]refinement has been written, and successfully tested with three unknown structures: inclusion of second derivatives has also been tested, with a view to improving the method. In all cases so far examined. the routine is very fast, simple to use and competitive with usual methods, even when the model is only approximately known. The inclusion of second derivatives as such is not convenient, at least if precautions are not taken to reach a true minimum: a possible way of further improvement is discussed.
C 1981 International Union of Crystallograply

[^0]: *There are additional symmetry properties to be considered if the amount of sideways displacement is a fraction of the translation period in that direction (for example the rhombohedral symmetry in close-packed structures when the sideways displacement is one third of the translation period).

[^1]: 0567-7394/81/010065-07\$01.00

